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Abstract: In this paper, we consider the classical yet widely applicable Cramér-
Lundberg risk model with Pareto distributed claim sizes. Building on the previously
known expression for the ruin probability we derive distributions of different ruin-related
quantities. The results rely on the theory of scale functions and are intended to illus-
trate the simplicity and effectiveness of the theory. A particular emphasis is put on the
tail behavior of the distributions of ruin-related quantities and their tail index value is
established. Numerical illustrations are provided to show the influence of the claim sizes
distribution tail index on the tails of the ruin-related quantities distribution.
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1 Introduction
In the classical ruin theory, the central model for the surplus of the insurance company
is provided by the Cramér-Lundberg process

Xt = ct−
Nt∑
i=1

ξi, t ≥ 0, (1)

where c > 0 is a constant rate at which premiums are collected, {Nt, t ≥ 0} is a Poisson
process with parameter λ modelling claim arrivals and (ξi, i ∈ N) are nonnegative inde-
pendent identically distributed random variables that represent the claim sizes. When the
insurance company starts its business with some initial surplus x, we may describe the
evolution of the surplus by the process x+X = {x+Xt, t ≥ 0}. Heavy-tailed distribution
are often adequate to model claim sizes. A distribution of random variable ξ1 is said to be
heavy-tailed if the tail distribution x 7→ P (ξ1 > x) is regularly varying at infinity. This
means that P (ξ1 > x) ∼ L(x)x−α as x→∞, where L is a slowly varying function, that is
L(tx)/L(t)→ 1 as t→∞ for every x > 0 (see Embrechts et al. (1997) for more details).
The parameter α > 0, called the tail index, governs the tail thickness of the distribution
and thus the probabilities of extreme events. A typical choice for the heavy-tailed claim
sizes distribution is Pareto distribution, which can be defined by the distribution function

Fα,β(x) = 1−
(

1 + x

β

)−α
, x > 0, (2)
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where β > 0 is the scale parameter and α > 0 is the tail index. This type of Pareto
distribution is supported on (0,∞) and is also referred to as the Pareto type II distribution
or Lomax distribution (see Arnold (2015)). Pareto distribution is a typical representative
of the class of heavy-tailed distributions and can successfully model the occurrence of
extreme events which is particularly important for insurance models (see for example
(Embrechts et al. 1997, Example 6.2.9) for the application on the fire insurance data).

SinceX = {Xt, t ≥ 0} is the difference between a linear trend and a compound Poisson
process, it is a Lévy process, that is a process with stationary independent increments
and càdlàg sample paths such that P (X0 = 0) = 1. More specifically, X falls into the
class of spectrally negative Lévy processes. These are Lévy processes with no positive
jumps which do not have monotone paths. A rich and analytically tractable fluctuation
theory has been developed for these processes (see e.g. Kyprianou (2006)).

Several practical questions arise from the risk model (1) given the initial surplus x
of the insurance company. The main problem is computing the probability of ruin while
within the so-called Gerber-Shiu risk theory, one is concerned with the distribution of
quantities like deficit at ruin and surplus immediately prior to ruin ((Asmussen & Al-
brecher 2010, Chapter XII), Kyprianou (2013)). Although the model (1) is simple, explicit
solutions to ruin problems are available only for some particular choices of the distribu-
tion of ξ1 (see (Asmussen & Albrecher 2010, Chapter IV) and the references therein). For
Pareto claims, the exact expression for the ruin probability has been obtained in Ramsay
(2003), Ramsay (2007) (see also Albrecher & Kortschak (2009) for the different type of
Pareto distribution). In the more general case of heavy-tailed claims, one has to rely on
various approximation techniques and asymptotic estimates of ruin probability (see (As-
mussen & Albrecher 2010, Chapter X) for a survey of results in this direction). Starting
from the work of Gerber and Shiu (Gerber & Shiu (1997, 1998)), there has been a growing
interest in the distribution of quantities related to ruin such as deficit at ruin and surplus
immediately prior to ruin. The explicit results in this direction are far less common.

The goal of this paper is to address ruin problems for the Cramér-Lundberg model
(1) with Pareto claims (2), especially the distribution of quantities related to ruin. The
approach is based on the powerful fluctuation theory of spectrally negative Lévy processes,
more specifically on the so-called scale function, an expression for which follows from the
results of Ramsay (2007). Although the theory of scale functions is developed for the more
general class of models, we use it here for methodological reasons to illustrate its simplicity
and explicitness. Using the scale function, the expressions are derived for densities of the
most common ruin-related quantities: deficit at ruin, surplus prior to ruin, last minimum
of the surplus before ruin, maximum before the ruin and maximal severity of ruin. All of
these expressions can be easily computed and well approximated. A particular focus is on
the influence of the tail index value on the distribution of ruin quantities. We establish
the tail behavior of the distributions considered. Numerical examples are provided to
illustrate the results.

Section 2 provides an overview of the spectrally negative Lévy processes and basic
results for the model (1). Section 3 contains various results concerning the laws at the
first passage time. Finally, in Section 4 a numerical illustration is provided with plots of
densities of ruin-related quantities.
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2 Preliminaries
In this section we review basic facts about spectrally negative Lévy processes, scale func-
tions and their use in exit problems following Kyprianou (2006) and Kuznetsov et al.
(2013). In the second part we restrict our consideration to model (1) and derive the scale
function based on the results of Ramsay (2007). It is worth mentioning that the theory of
scale functions is far more powerful that it is needed to obtain the results for the classical
model considered here.

Suppose X = {Xt, t ≥ 0} is a Lévy process on some filtered probability space
(Ω,F ,F, P ). Due to stationary and independent increments, there is a function Ψ : R→ C
such that logE

[
eiζXt

]
= −tΨ(ζ) for t ≥ 0, ζ ∈ R. By the Lévy-Khintchine formula Ψ

has the following general form

Ψ(ζ) = iaζ + σ2

2 ζ
2 +

∫
R

(
1− eiζx + iζx1{|x|≤1}

)
Π(dx), (3)

with a ∈ R, σ > 0 and Π a measure on R\{0} such that
∫

(1∧x2)Π(dx) <∞. We refer to
(a, σ,Π) as the characteristic triplet. In what follows, Px will denote probability such that
Px(X0 = x) = 1 and Ex the corresponding expectation operator, keeping the notation P
for the case P0.

For our purpose it is enough to consider spectrally negative Lévy processes, that is
Lévy processes such that Π(0,∞) = 0 and whose paths are not monotone. This implies
that the process has no positive jumps. Except model (1), examples are Brownian motion
with drift, difference of positive drift and subordinator and even processes of unbounded
variation. In this case, one can work with the Laplace exponent ψ(θ) = logE

[
eθX1

]
,

which is well defined at least for θ ≥ 0. General form of ψ follows from (3) by analytical
extension of the characteristic exponent ψ(θ) = −Ψ(−iθ). The value ψ′(0+) determines
the long term behaviour of the process since ψ′(0+) = EX1 ∈ [−∞,∞). In ruin theory,
considering X as the model for surplus, the case of interest is ψ′(0+) > 0 when process
drifts to +∞ as otherwise the probability of ruin is 1. Furthermore, ψ is strictly convex
and ψ(θ)→∞ as θ →∞, thus we can define the right continuous inverse

Φ(q) = sup {θ ≥ 0 : ψ(θ) = q} . (4)

If ψ′(0+) ≥ 0, the equation ψ(θ) = q has a unique solution and in particular Φ(0) = 0.
Fluctuation theory of spectrally negative Lévy processes provides particularly nice and
tractable identities. A powerful tool in this context are the scale functions defined as
follows.

Definition 1. For q ≥ 0, let W (q) : R→ [0,∞) be defined by W (q)(x) = 0 for x < 0 and
on [0,∞), W (q) is the unique right continuous function whose Laplace transform is given
by ∫ ∞

0
e−θxW (q)(x)dx = 1

ψ(θ)− q , for θ > Φ(q).

We write W for W (0) and call it the scale function. W (q) is called the q-scale function.
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One can show (see Kuznetsov et al. (2013)) that for every spectrally negative Lévy
process, q-scale function exists for every q ≥ 0. In the case ψ′(0+) > 0, scale function can
be explicitly characterized as

W (x) = 1
ψ′(0+)Px(X∞ ≥ 0), (5)

where X∞ = inft≥0Xt. The name originates from the analogy with the diffusion processes
inspired by the following fluctuation identity for q ≥ 0 and x < a

Ex
[
e−qτ

+
a 1{τ+

a <τ
−
0 }

]
= W (q)(x)
W (q)(a) , (6)

where for some a ∈ R

τ+
a = inf{t > 0 : Xt > a},
τ−a = inf{t > 0 : Xt < a},

denote the first passage time above and below level a, respectively. Moreover, we have
that the (infinite horizon) ruin probability is

Px(τ−0 <∞) =

1− ψ′(0+)W (x), if ψ′(0+) > 0,
1, if ψ′(0+) ≤ 0.

(7)

Suppose now thatX = {Xt, t ≥ 0} is the Cramér-Lundberg process (1) with (ξi, i ∈ N)
having Pareto distribution (2) with parameters α, β > 0. We restrict our attention to the
finite mean case α > 1 and suppose that

m := EX1 = c− λ β

α− 1 > 0, (8)

that is the net profit condition is satisfied. Let fα,β denote the probability density function
of the Pareto distribution with parameters α, β > 0, that is

fα,β(x) = α

β

(
1 + x

β

)−α−1

, x > 0,

and fα,β(x) = 0 for x ≤ 0. Notice that for x > 0 it holds that

fα−1,β(x) = α− 1
β

(1− Fα,β(x)) . (9)

The characteristic exponent (3) of X can be written in the following form

Ψ(ζ) = − logE
[
eiζX1

]
= −

(
iζc− λ

∫ ∞
−∞

(
1− e−iζx

)
fα,β(x)dx

)
= −iζc− iζ

∫ 1

−1
xλf(−x)dx+

∫ ∞
−∞

(
1− eiζx + iζx1{|x|≤1}

)
λfα,β(−x)dx.
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Therefore, the characteristic triplet of X is (a, 0,Π) with

a = −c− λ
∫ 0

−1
xfα,β(−x)dx = −c− λ

α− 1

(1 + 1
β

)−α
(α + β)− β

 ,
and the Lévy measure Π is absolutely continuous with respect to Lebesgue measure with
density π(x) = λfα,β(−x) supported on (−∞, 0).

SinceX is a difference between a drift and a compound Poisson process it easily follows
that the Laplace exponent of X is

ψ(θ) = logE
[
eθX1

]
= cθ + λ

∫
(0,∞)

(
e−θx − 1

)
dFα,β(x) = cθ + λ

(
F̂α,β(θ)− 1

)
,

with F̂α,β(θ) =
∫
(0,∞) e

−θxdFα,β(x) denoting the Laplace transform of Fα,β. Following
Nadarajah & Kotz (2006), the Laplace transform of the Pareto distribution is given by

F̂α,β(θ) = α(βθ)αeβθΓ(−α, βθ),

where Γ(s, x) =
∫∞
x ts−1e−tdt denotes the incomplete gamma function. Using the property

of the incomplete gamma function x−sexΓ(s+ 1, x) = sx−sexΓ(s, x) + 1 ((Abramowitz &
Stegun 1964, 6.5.22)) we can rewrite

ψ(θ) = cθ − λ(βθ)αeβθΓ(1− α, βθ)

= cθ

(
1− λβ

c(α− 1)(α− 1)(βθ)α−1eβθΓ(1− α, βθ)
)
.

In order to find the scale function W of X we should find inverse Laplace transform of
1/ψ(θ). In Ramsay (2007), the inverse Laplace transform is given for the function

1− ρ
θ (1− ρ(α− 1)(βθ)α−1eβθΓ(1− α, βθ)) .

Using this result and putting ρ = λβ
c(α−1) , we easily get the following.

Corollary 1. For the Cramér-Lundberg model (1)-(2) such that α > 1 and (8) holds, the
scale function is given by

W (x) = 1
m

(
1−

∫ ∞
0

ρ(1− ρ)uα−2

Γ(α− 1)H(u, α, ρ)e
−(1+ x

β )udu
)
, (10)

where

H(u, α, ρ) =

(1 + (α− 1)ρe−u Eiα(u))2 +
(
πρu

α−1e−u

Γ(α−1)

)2
, if α = 2, 3, . . .

(1− ρR(u, α− 1))2 +
(
πρu

α−1e−u

Γ(α−1)

)2
, if α > 1 and α 6= 2, 3, . . .

R(u, α) = 1 +
∞∑
i=1

ui

(α− 1) · · · (α− i) −
πuαe−u

Γ(α) cot(πα), α /∈ N
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and Eiα(u) denotes the generalization of the exponential integral defined for u > 0, α ∈ N
by the asymptotic expansion

Eiα(u) = uα−1

(α− 1)!

(
γ + ln u−

α−1∑
i=1

1
i

)
+

∞∑
i=0,i 6=α−1

ui

(i− α + 1)i! .

From (7) we get Ramsey’s result for the ruin probability (Ramsay (2007)) and from
(6) the solution for the two-sided exit problem. The probability of ruin given the initial
surplus x is

Px(τ−0 <∞) = 1−mW (x). (11)

For a > 0 and x < a probability of attaining a before ruin is given by

Px(τ+
a < τ−0 ) = W (x)

W (a) .

See Dickson & Gray (1984) for an early work on this type of two-sided ruin problem.

3 Ruin-related quantities
Starting from the papers Gerber & Shiu (1997, 1998), there has been growing interest
in quantities related to ruin. Using the process X to model the surplus of the insurance
company, besides obvious interest in the time of ruin τ−0 , we can also investigate deficit at
ruin −Xτ−

0
and surplus immediately prior to ruin Xτ−

0 −
. The expected discounted penalty

function, introduced by Gerber & Shiu (1998), provides an approach to study the joint
distribution of these random variables. Let

X t = inf
s≤t

Xs,

X t = sup
s≤t

Xs.

In the context of spectrally negative Lévy processes, Biffis & Morales (2010) introduce
the generalized expected discounted penalty function that additionally includes the last
minimum of the surplus before ruin Xτ−

0 −
. Another extension was given in Yin & Yuen

(2014) by including maximum before the ruin Xτ−
0
. The occurrence of ruin may not

necessarily mean that the insurance company will stop its business. Depending on how
severe the ruin is, it may find ways to operate until recovery. The problem can be studied
by investigating the maximal severity of ruin (see Picard (1994) and references therein).
If η denotes the time of recovery η = inf{t > τ−0 : Xt ≥ 0}, then the severity of ruin can
be analyzed through Xη which represents maximal deficit during the ruin, i.e. minimum
of Xt over the interval [τ−0 , η]. For the joint laws involving −Xη see Yin & Yuen (2014).

To summarize, the distribution of the following ruin-related quantities will be studied
in this paper:

• deficit at ruin −Xτ−
0
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• surplus prior to ruin Xτ−
0 −

• last minimum of the surplus before ruin Xτ−
0 −

• maximum before the ruin Xτ−
0

• maximal deficit during the ruin Xη

Except in solving exit problems, scale functions can be used to describe undershoot
and overshoot distributions at first passage time of spectrally negative Lévy processes.
Hence, they provide a powerful tool to deal with distributions of ruin-related quantities.
Based on the scale function (10), the following proposition gives the joint distribution of
combinations of ruin-related quantities for the model (1) with Pareto claims (2). These
will be used in the next subsection to obtain the marginal distributions. The proof is
based on the results of (Kyprianou 2006, Chapter 8) and Biffis & Kyprianou (2010) (see
also Remark 1).

Proposition 1. Suppose {Xt, t ≥ 0} is the Cramér-Lundberg process (1)-(2) such that
α > 1 and (8) holds.

(i) The distribution of the random vector
(
−Xτ−

0
, Xτ−

0 −

)
conditionally on {τ−0 < ∞}

is absolutely continuous with density given by

k(y, z) =


1

1−mW (x)λ (W (x)−W (x− z)) fα,β(y + z), y > 0, 0 < z ≤ x,
1

1−mW (x)λW (x)fα,β(y + z), y > 0, z > x,

0, otherwise.

(ii) The distribution of the random vector
(
−Xτ−

0
, Xτ−

0 −
, Xτ−

0 −

)
conditionally on {τ−0 <

∞} is

k̄(dy, dz, dw) =

1
1−mW (x)λW

′(x− w)fα,β(y + z)dydzdw, y > 0, 0 < z ≤ x, 0 < w ≤ z,
1

1−mW (x)

(
λW ′(x− w)fα,β(y + z)dydzdw

+ λW (0)fα,β(y + z)dydzδx(dw)
), y > 0, z > x, 0 < w ≤ x,

0, otherwise.

Proof. (i) By (Kyprianou 2006, Corollary 8.8.), for any spectrally negative Lévy process
X we have for any q ≥ 0 and y, z > 0 that

Ex
[
e−qτ

−
0 ;−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz, τ−0 <∞

]
=(

e−Φ(q)zW (q)(x)−W (q)(x− z)
)

Π(−dy − z)dz,
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where Φ is defined in (4), Π is the Lévy measure and W (q) is the corresponding q-scale
function. Since we have assumed m = EX1 > 0, then Φ(0) = 0 and taking q = 0 in the
preceding equation we obtain

Px
(
−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz, τ−0 <∞

)
= (W (x)−W (x− z)) Π(−dy − z)dz.

Lévy measure is absolutely continuous with density π(x) = λfα,β(−x). Using the expres-
sion (11) we get the density of Px

(
−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz|τ−0 <∞

)
.

(ii) The proof follows from the expression for the generalized Gerber-Shiu measure
given in Biffis & Kyprianou (2010) (see Remark 1). Given any spectrally negative Lévy
process with positive mean, it holds for q, x ≥ 0 and y, z, w ≥ 0 that

Ex
[
e−qτ

−
0 ;−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz,Xτ−

0 −
∈ dw, τ−0 <∞

]
= 1{0<w≤z∧x,y>0}e

−Φ(q)(z−w)×
×
(
(W (q))′(x− w)− Φ(q)W (q)(x− w)

)
Π(−dy − z)dzdw

+ 1{x<z,y>0}e
−Φ(q)(z−x)W (q)(0)Π(−dy − z)dzδx(dw)

+ σ2

2
(
(W (q))′(x)− Φ(q)W (q)(x)

)
δ(0,0,0)(dy, dz, dw).

(12)

where δ denotes the Dirac measure. Since Φ(0) = 0 and in the model considered there is
no Gaussian component (σ = 0), it follows that

Px
(
−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz,Xτ−

0 −
∈ dw, τ−0 <∞

)
= 1{0<w≤z∧x,y>0}W

′(x− w)Π(−dy − z)dzdw
+ 1{x<z,y>0}W (0)Π(−dy − z)dzδx(dw)

The derivativeW ′ is well defined because the function x 7→ Π(−∞,−x) is continuous and
therefore W ∈ C1(0,∞) ((Kuznetsov et al. 2013, Lemma 2.4)).

Remark 1. The second term on the right-hand side of (12) is missing in Biffis & Kyprianou
(2010). It accounts for the fact that Xτ−

0 −
has a point mass at x due to the event that

the ruin occurs with surplus never dropping below level x, which can happen only in the
case Xτ−

0 −
> x. Assuming additionally that σ = 0, the following identity similar to (12)

has been proved in (Yin & Yuen 2014, Eq. 3.3.)

Ex
[
e−qτ

−
0 ;−Xτ−

0
∈ dy,Xτ−

0 −
∈ dz,Xτ−

0 −
> b, τ−0 <∞

]
= 1{0<b<z∧x,y>0}

(
e−Φ(q)(z−b)W (q)(x− b)−W (q)(x− z)

)
Π(−dy − z)dz.

From here the point mass is clearly visible as b→ x. The derivative of the scale function in
Biffis & Kyprianou (2010) should be understood formally as the “density” of the measure
W (q)(x− dw) which has absolutely continuous and discrete part with support at point 0.
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3.1 Distributions of ruin-related quantities
The following theorem summarizes distributions of ruin-related quantities studied in this
paper.

Theorem 1. Suppose {Xt, t ≥ 0} is the Cramér-Lundberg process (1)-(2) such that α > 1
and (8) holds.

(i) The density of −Xτ−
0
conditionally on {τ−0 <∞} is

k1(y) = 1
1−mW (x)

(
(c−m)W (x)fα−1,β(y)

− λ
∫ x

0
W (x− z)fα,β(y + z)dz

)
1{y>0}.

(ii) The density of Xτ−
0 −

conditionally on {τ−0 <∞} is

k2(z) =


c−m

1−mW (x) (W (x)−W (x− z)) fα−1,β(z), 0 < z ≤ x,
c−m

1−mW (x)W (x)fα−1,β(z), z > x,

0, z ≤ 0.

(iii) The distribution of Xτ−
0 −

conditionally on {τ−0 <∞} is

k3(dw) = c−m
1−mW (x)

(
W ′(x− w) (1− Fα−1,β(w)) dw

+W (0) (1− Fα−1,β(x)) δx(dw)
)

1{0<w≤x}.

(iv) The density of Xτ−
0
conditionally on {τ−0 <∞} is

k4(v) = W (x)
(1−mW (x))

W ′(v)
W (v)2 1{x≤v}.

(v) The density of −Xη conditionally on {τ−0 <∞} is

k5(u) = 1
(1−mW (x))W (u)2

(
W ′(x+ u)W (u)

− (W (x+ u)−W (x))W ′(u)
)

1{u>0}.
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Proof. (i) For y > 0 we have from Proposition 1(i) by using (9):

k1(y) =
∫ ∞

0
k(y, z)dz

= 1
1−mW (x)

λ ∫ x

0
(W (x)−W (x− z)) fα,β(y + z)dz

+ λW (x)
∫ ∞
x

fα,β(y + z)dz


= 1
1−mW (x)

(
λW (x)

∫ ∞
0

fα,β(y + z)dz − λ
∫ x

0
W (x− z)fα,β(y + z)dz

)
= 1

1−mW (x)

(
(c−m)W (x)fα−1,β(y)− λ

∫ x

0
W (x− z)fα,β(y + z)dz

)
.

(ii) From Proposition 1(i) for 0 < z ≤ x it follows that

k2(z) =
∫ ∞

0
k(y, z)dy

= 1
1−mW (x)λ (W (x)−W (x− z))

∫ ∞
0

fα,β(y + z)dy

= 1
1−mW (x)λ (W (x)−W (x− z)) (1− Fα,β(z))

= c−m
1−mW (x) (W (x)−W (x− z)) fα−1,β(z),

while for z > x

k2(z) = 1
1−mW (x)λW (x)

∫ ∞
0

fα,β(y + z)dy

= c−m
1−mW (x)W (x)fα−1,β(z).

(iii) Proposition 1(ii) gives that for w > 0

k3(dw) =
∫ x

0

∫ ∞
0

k̄(dy, dz, dw) +
∫ ∞
x

∫ ∞
0

k̄(dy, dz, dw) =: I1 + I2.

Using (9) we get

I1 = λW ′(x− w)
1−mW (x)

∫ x

0
(1− Fα,β(z)) 1{0<w≤z}dzdw

= c−m
1−mW (x)W

′(x− w)
∫ x

w
fα−1,β(z)dzdw

= c−m
1−mW (x)W

′(x− w) (Fα−1,β(x)− Fα−1,β(w)) dw
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and

I2 = 1
1−mW (x)

λW ′(x− w)
∫ ∞
x

(1− Fα,β(z)) dzdw

+ λW (0)
∫ ∞
x

(1− Fα,β(z)) dzδx(dw)


= c−m
1−mW (x)

(
W ′(x− w)

∫ ∞
x

fα−1,β(z)dzdw +W (0)
∫ ∞
x

fα−1,β(z)dzδx(dw)
)

= c−m
1−mW (x) (W ′(x− w) (1− Fα−1,β(x)) dw +W (0) (1− Fα−1,β(x)) δx(dw)) .

By combining the two expressions, the statement follows.
(iv) Since the event {Xτ−

0
≤ v} simply means the ruin happens before level v is

reached, we have for v ≥ x from (6)

Px
(
Xτ−

0
≤ v, τ−0 <∞

)
= Px

(
τ+
v > τ−0 , τ

−
0 <∞

)
= 1− W (x)

W (v) . (13)

By the same argument as in the proof of Proposition 1(ii), we have thatW is differentiable
and the distribution of Xτ−

0
is absolutely continuous. Taking derivative with respect to v

in (13) we get

Px
(
Xτ−

0
∈ dv, τ−0 <∞

)
= 1{x≤v}W (x)W

′(v)
W (v)2 .

Dividing by Px
(
τ−0 <∞

)
= 1−mW (x) gives (iv).

(v) The distribution of −Xη has a very simple expression in terms of the scale function.
In the compound Poisson case considered here, for u > 0 it holds that (Picard (1994),
(Asmussen & Albrecher 2010, Proposition 2.15); see also Remark 2)

Px
(
−Xη ≤ u, τ−0 <∞

)
= W (x+ u)−W (x)

W (u) . (14)

Since the distribution is absolutely continuous taking derivative of this expression yields
the statement.

Remark 2. By adapting the argument of Picard (1994) (see also (Asmussen & Albrecher
2010, Proposition 2.15)), (14) can be extended to any spectrally negative Lévy process.
Indeed, suppose X is a spectrally negative Lévy process such that EX1 > 0. First, since
X drifts to ∞ it follows that η < ∞ on the event {τ−0 < ∞}. The event {−Xη ≤ u}
means the ruin occurs with deficit −Xτ−

0
≤ u and starting from Xτ−

0
the recovery is
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reached before level −u, that is by the strong Markov property and (6) we have

Px
(
−Xη ≤ u, τ−0 <∞

)
=
∫ ∞

0
Px
(
−Xτ−

0
∈ dy,−Xη ≤ u, τ−0 <∞

)
=
∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
P−y

(
τ+

0 < τ−−u
)

=
∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
Pu−y

(
τ+
u < τ−0

)
=
∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)W (u− y)
W (u) .

(15)

Next, using spatial homogeneity, strong Markov property and (7) we get

1− ψ′(0+)W (x+ u) = Px+u
(
τ−0 <∞

)
=
∫ u

0
Px+u

(
u−Xτ−

u
∈ dy, τ−0 <∞

)
+
∫ ∞
u

Px+u
(
u−Xτ−

u
∈ dy, τ−0 <∞

)
(16)

=
∫ u

0
Px+u

(
u−Xτ−

u
∈ dy, τ−u <∞

)
Pu−y

(
τ−0 <∞

)
+
∫ ∞
u

Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
=
∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
(1− ψ′(0+)W (u− y))

+
∫ ∞
u

Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
=
∫ ∞

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
− ψ′(0+)

∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
W (u− y)

= 1− ψ′(0+)W (x)− ψ′(0+)
∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
W (u− y).

In words, the two terms in (16) account for the case the ruin does not occur with the first
crossing bellow level u and the case the ruin occurs exactly then. Again, by using (7) it
follows that ∫ u

0
Px
(
−Xτ−

0
∈ dy, τ−0 <∞

)
W (u− y) = W (x+ u)−W (x).

By combining with (15), the statement follows.
It should be emphasized that although the expressions for densities in Theorem 1

seem complicated, they all except k1 involve only the scale function, its derivative and
density and distribution function of different Pareto distributions. Both W and W ′ can
be well approximated by using numerical integration and the functions under the integral
in (10) can be approximated to a high precision with computer algebra systems like
e.g. Mathematica. Since the integrand in (10) is non-oscillating (Ramsay (2007)), even
standard methods of numerical integration work well. By the dominated convergence
theorem, W ′ can be expressed using the notation from Corollary 1 as

W ′(x) = 1
m

∫ ∞
0

ρ(1− ρ)uα−2

Γ(α− 1)H(u, α, ρ)e
−(1+ x

β )uu
β
du,
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which again can be computed as in the case of the scale functionW . Further quantities in
Theorem 1 are straightforward to compute, except the integral appearing in (i). However,
using Fubini’s theorem and (10) we get the following∫ x

0
W (x− z)fα,β(y + z)dz =

1
m

(Fα,β(x+ y)− Fα,β(y))− 1
m

∫ ∞
0

ρ(1− ρ)uα−2

Γ(α− 1)H(u, α, ρ)e
−(1+ x

β )uJα,β(x, y, u)du,

where
Jα,β(x, y, u) =

∫ x

0
e
zu
β fα,β(y + z)dz.

As we illustrate in Section 4, this integral can also be approximated successfully.

3.2 Tail behaviour
The tail index represents the main parameter of the claims distribution that governs the
size of the claims. It is therefore interesting to analyze how the heavy-tails of the claims
affect the ruin distributions. Asymptotic ruin probabilities as the initial surplus tends to
infinity have attracted a lot of attention, both for small and large claims and for a range of
different risk models. For the classical model, in (Asmussen & Albrecher 2010, Chapter X)
a survey of the main results can be found with an overview of the important references.
These results have been extended to Lévy based risk process with particular attention
to models incorporating large claims through subexponential and convolution equivalent
distributions (Klüppelberg et al. (2004)). When it comes to ruin-related quantities, most
references are investigating asymptotic behaviour when the initial surplus tends to infinity
and are restricted to deficit at ruin and surplus prior to ruin. For the classical model
see e.g. Willmot & Lin (1998) and Schmidli (1999), while for the Lévy risk process see
Klüppelberg & Kyprianou (2006) and Griffin et al. (2012).

Here we establish a simple characterization of the tails of the ruin distributions con-
sidered. We write that a random variable Y ∈ RV (−α) if it is heavy-tailed with index α,
that is the tail distribution is −α-regularly varying function:

lim
t→∞

P (Y > tx)
P (Y > t) = x−α, for every x > 0.

As the next theorem shows, when the claim distribution is Pareto with tail index α, the
ruin-related quantities are also heavy-tailed but with lower value of the tail index α− 1.

Theorem 2. If {Xt, t ≥ 0} is the Cramér-Lundberg process (1)-(2) such that α > 1 and
(8) holds, then

(i) −Xτ−
0
∈ RV (−α + 1),

(ii) Xτ−
0 −
∈ RV (−α + 1),

(iii) Xτ−
0
∈ RV (−α + 1),
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(iv) −Xη ∈ RV (−α + 1).

Proof. (i) First, notice that we can write

∫ x
0 W (x− z)fα,β(ty + z)dz∫ x
0 W (x− z)fα,β(t+ z)dz =

fα,β(ty)
∫ x
0 W (x− z)fα,β(ty+z)

fα,β(ty) dz

fα,β(t)
∫ x

0 W (x− z)fα,β(t+z)
fα,β(t) dz

,

and that
fα,β(ty + z)
fα,β(ty) → 1 as t→∞.

Since fα,β is (−α−1)-regularly varying, it follows that so is y 7→ λ
∫ x

0 W (x−z)fα,β(y+z)dz.
From Theorem 1(i), k1 is then a difference between −α-regularly varying function fα−1,β
and (−α − 1)-regularly varying function. It is easy to see that k1 is then −α-regularly
varying and by Karamata’s theorem (see e.g. (Embrechts et al. 1997, Appendix A3)) it
follows that −Xτ−

0
∈ RV (−α + 1).

(ii) is obvious from Theorem 1(ii).
(iii) From (13) we have that the tail distribution function of Xτ−

0
is

Px
(
Xτ−

0
> v|τ−0 <∞

)
= 1− 1

1−mW (x)

(
1− W (x)

W (v)

)
= W (x)

1−mW (x)
1−mW (v)

W (v) .

Since W (v) =
(
1− Pv(τ−0 <∞)

)
/m→ 1/m as v →∞, the tail behaviour of Xτ−

0
is the

same as for the ruin probability 1−mW (v). By (Asmussen & Albrecher 2010, Theorem
2.1), the ruin probability for heavy-tailed claims is (−α + 1)-regularly varying and the
statement follows.

(iv) Directly from (14) we have

Px
(
−Xη > u|τ−0 <∞

)
= 1− 1

1−mW (x)
W (x+ u)−W (x)

W (u)

= W (x)
1−mW (x)

1−mW (u)
W (u) − W (x+ u)−W (u)

W (u) .

Since
W (x+ u)−W (u)

W (u) → 0,

as u→∞, the argument is the same as in (iii).

Remark 3. The argument used in the proof of (iii) and (iv) of Theorem 2 can be applied
to a more general situation than considered in this paper. It requires only the ruin
probability to be slowly varying.
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4 Numerical illustration
In this section we plot the ruin probability and the densities of various ruin-related quan-
tities obtained in Theorem 1. We are interested in observing how the ruin probability
and distributions change with the tail heaviness of the claim sizes distribution. Therefore,
for each object we provide several plots for a range of α values (α = 1.5, 2, 2.5, 3, 4).
Other parameters are kept fixed: β = 1, λ = 1, c = 5 and so the net profit condition (8)
is satisfied for every value of α considered. The computation and corresponding plots are
generated using Mathematica (Wolfram Research Inc. (2014)). Numerical integration is
preformed using the built-in modules based on adaptive sampling strategies. All the code
is available from the author upon request.

We start with the probability of ruin, that is we plot the function x 7→ Px(τ−0 < ∞)
for a range of α values (Fig. 1a). Some values are shown in Table 1 for specific values of
the initial surplus x. One can notice how heavier tails of the claim sizes produce slower
decay of the probability of ruin as the initial surplus increases. This illustrates how
extreme events constitute a major risk for the insurance company and how the value of
the tail index of the claims distribution is a good indicator of the riskiness of the insurer’s
portfolio.

Table 1: Probability of ruin for a range of α and initial surplus x values

α \ x 1 2 5 10 15 20
1.5 0.32388 0.28431 0.2232 0.17662 0.15128 0.13461
2 0.11393 0.0806 0.04283 0.02377 0.01634 0.01241
2.5 0.05345 0.03052 0.01112 0.00444 0.00251 0.00166
3 0.02822 0.01302 0.00328 0.00096 0.00045 0.00026
4 0.00932 0.00282 0.00035 0.00006 0.00002 7.81 · 10−6

Figures 1b-1f show densities obtained in Theorem 1. Here the initial surplus is kept
fixed at x = 5. Comparing the deficit at ruin for different α values (Fig. 1b), one can
notice that the lower the α is, the distribution has more mass away from the origin which
accounts for the higher deficit when the ruin occurs. In this situation, ruin is due to a
single large claim, which represents a large jump downwards of the surplus process below
level zero. Such scenario is hazardous for the insurance company. The discontinuity at
x in the density of Xτ−

0
(Fig. 1c) is well documented (see Dickson (1992) and (Asmussen

& Albrecher 2010, Proposition 2.14)). For lower values of α, the distribution of Xτ−
0
still

has a considerable mass away from x as the ruin can occur even when the surplus is far
away from the initial value. From the insurance company point of view, such portfolios
may cause ruin even when the surplus is at its high values due to the possible large claim
occurrence. Figure 1d shows the absolutely continuous part (kac3 ) of the distribution of
Xτ−

0 −
supported on (0, x). It also illustrates that the point mass at x is larger for the larger

values of α. This means that for the less risky portfolios with lighter tails, the minimum
is more likely to never drop bellow initial surplus. The maximal surplus achieved before
the ruin is more likely to be near the initial surplus for higher value of α than for the lower
(Fig. 1e). Finally, the ruin can be much more severe when α is small as the distribution
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of −Xη assigns more mass to higher values than in the case of larger α (Fig. 1f). This is
connected to the distribution of the deficit at ruin and accounts for the fact that in the
small α case ruin can occur by a single large claim.

The simulation presented here also illustrates that the expressions appearing in Theo-
rem 1 can be well approximated. For instance, all the densities considered in this example
and plotted in Figure 1, integrate numerically to one up to an error which is of order of
the machine precision.

Acknowledgments: The author would like to thank the anonymous reviewer for
helpful and constructive comments that greatly contributed to improving the final version
of the paper.
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(a) Ruin probability (b) Deficit at ruin

(c) Surplus prior to ruin (d) Last minimum of the surplus before ruin

(e) Maximum before the ruin (f) Maximal severity of ruin

Figure 1: Distributions of ruin-related quantities
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